梁栋-研究员

联系我们

0755-86392676

zy.li@siat.ac.cn

当前位置:
  • /Uploads/team/2022-01-26/61f0ac5b929bd1.36579957.jpg

    姓名:梁栋

    职称:研究员/所长、中心主任

    学位:博士

    邮箱: dong.liang@siat.ac.cn

    研究领域:生物医学成像、快速磁共振成像、压缩感知理论、信号处理、机器学习

  • 个人简介
  • 代表性项目
  • 代表性论著

梁栋(LIANG DONG),研究员,国家杰出青年基金获得者。中国科学院深圳先进技术研究院医工所所长、医学人工智能研究中心主任。2006年3月于上海交通大学获得博士学位,后赴香港大学及美国威斯康星大学密尔沃基分校做博士后研究,2011年4月加入中国科学院深圳先进技术研究院。主要研究方向为快速结构和功能磁共振成像。从理论方法、技术应用到转移转化做出了系统性的成果,发展了多先验快速成像框架;攻克了自由呼吸心脏电影、三维高分辨血管壁成像等关键技术;与民族企业共同研制了我国首型3T快速成像产品及国际首个FDA认证的人工智能快速成像产品。权威期刊PMB将细节保真方法评为该刊2016年“最前沿并具影响力”亮点之一,从大数据中直接学习成像映射的工作被同行评价为“首次将深度学习用于磁共振成像”及“有潜力为成像科学带来革命”。 主持国家杰出青年科学基金,国家自然科学基金重点项目、国家重点研发计划课题等多个科研项目;发表SCI文章100余篇,授权发明专利43项。现担任中国科学院医学成像技术与装备工程实验室主任,《IEEE Transactions on Medical Imaging》副主编、《Magnetic Resonance in Medicine》编委;获2018年度王天眷波谱学奖、2018年度中国专利优秀奖(第一发明人)、2018年度深圳市技术发明一等奖(第一完成人)、2018年度广东省技术发明一等奖(第二完成人)、2019年度中国生物医学工程学会黄家驷生物医学工程科技进步一等奖(第二完成人)和2020年度国家科技进步一等奖(第五完成人)。

1、集成已知部分支集压缩感知和并行成像的动态对比增强磁共振成像重建方法研究,主持,国家级,2012-01--2014-12,结题

2、实时高分辨磁共振成像的理论与方法研究,参与,国家级, 2012-01--2016-12,结题

3、基于深度稀疏表达的快速磁共振成像研究,主持,国家级,2015-01--2018-12,结题

4、静态数字乳腺断层成像系统,主持,省级,2016-01--2017-12,结题

5、PET-MRI成像理论与关键技术研究,主持,省级, 2016-01--2018-12,结题

6、线圈研制及临床序列开发,主持,国家级, 2017-07--2020-12,结题

7、新型超快速多尺度磁共振成像与波谱及其高分辨重建,参与,国家级,2019-01--2022-12,结题

8、分布式超快核磁共振成像的数学理论与算法,主持,国家级,国自然数学天元基金,2021-01--2022-12,结题        

9、快速磁共振成像,主持,国家级,国自然杰出青年基金,2021-01--2026-12,在研

10、基于学习模型的快速成像方法与应用研究,主持,国家级,国家重点研发计划课题,2021-12--2026-11,在研

11、低剂量CT成像关键技术及术中图像融合算法研究,主持,深圳,深圳市基础研究(重点项目),2021-10--2025-11,在研

12、耦合运动与不变性先验的消化道动态高分辨磁共振成像方法及应用,主持,国家级,国自然重点项目,2024-01--2028.12,在研

1.Liu C, Cui Z X, Jia S, et al. Accelerated submillimeter wave‐encoded magnetic resonance imaging via deep untrained neural network[J]. Medical Physics, 2023.

2.Cui Z X, Jia S, Cheng J, et al. Equilibrated zeroth-order unrolled deep network for parallel mr imaging[J]. IEEE Transactions on Medical Imaging, 2023.

3.Cui Z X, Jia S, Cao C, et al. K-UNN: k-space interpolation with untrained neural network[J]. Medical Image Analysis, 2023, 88: 102877.

4.Peng H, Jiang C, Cheng J, et al. One-shot Generative Prior in Hankel-k-space for Parallel Imaging Reconstruction[J]. IEEE Transactions on Medical Imaging, 2023.

5.Xu W, Jia S, Cui ZX, Zhu Q, Liu X, Liang D, Cheng J. Joint Image Reconstruction and Super-Resolution for Accelerated Magnetic Resonance Imaging. Bioengineering (Basel). 2023

6.Zhou Y, Wang H, Liu C, Liao B, Li Y, Zhu Y, Hu Z, Liao J, Liang D. Recent advances in highly accelerated 3D MRI. Phys Med Biol. 2023 Jul 10;68(14).

7.Zhu Q, Cui ZX, Liu Y, Cheng J, Zhao K, Wang H, Zhu Y, Liang D. Characteristic-constrained accelerating MR T1rho mapping with blockwise infimal convolution of matrix elastic-net regularization. Med Phys. 2023 Apr;50(4):2224-2238


8.Shi C, Liu Y, Cheng G, Qi Y, Wang H, Liu X, Liang D, Zhu Y. High-efficiency 3D black-blood thoracic aorta imaging with patch-based low-rank tensor reconstruction. Quant Imaging Med Surg. 2023 Apr 1;13(4):2538-2555.

9.Q. Zhang et al., "Deep Generalized Learning Model for PET Image Reconstruction," in IEEE Transactions on Medical Imaging, doi: 10.1109/TMI.2023.3293836

10.Su T, Zhu J, Zhang X, Tan Y, Cui H, Zeng D, Guo J, Zheng H, Ma J, Liang D, Ge Y. Super resolution dual-energy cone-beam CT imaging with dual-layer flat-panel detector. IEEE Trans Med Imaging. 2023 Sep 27;PP. doi: 10.1109/TMI.2023.3319668.



11.Y Zhou, H Wang, Y Liu, D Liang*, and L Ying,      Accelerating MR Parameter Mapping Using Nonlinear Compressive Manifold      Learning and Regularized Pre-Imaging, IEEE, Trans. on Biomedical      Engineering, 69(10): 2996-3007, 2022

12.C Liu, Y Zhou, C Shi, Z Cui, Y Liu, Y Guo, K Huang, C Zou, Y      Zhu, X Liu, Y Li, H Zheng, D Liang *, and H Wang*, Design and      Implementation of Low-cost Distributed Tabletop Magnetic Particle Imaging      System, IEEE Trans. on Magnetic, 58(7): 5300115, 2022.

13.Z Ke#, W Huang#, Z Cui, J Cheng, S Jia, H Wang, X Liu, H Zheng,      L Ying, Y Zhu*, D Liang*, Learned Low-rank Priors in Dynamic MR      Imaging, IEEE Trans. on Medical Imaging, DOI:      10.1109/TMI.2021.3096218, 2021 (影响因子10.048)

14.J Cheng#, Z      Cui#, W Huang, Z Ke, L Ying, H Wang, Y Zhu, D Liang*, Learning      data consistency and its application to MR dynamic imaging, IEEE      Transactions on Medical Imaging, 11: 3140-3153, 2021

15.W Huang#, Z Ke#,      Z Cui, J Cheng, Z Qiu, S Jia, L Ying, Y Zhu, D Liang*, Deep      low-Rank plus sparse network for dynamic MR imaging. Medical Image      Analysis, 73:102190, 2021 (影响因子8.545)

16.C Quan, Cong and   J Zhou, Y Zhu and Y Chen and S Wang, D Liang* and Q      Liu*, Homotopic Gradients of Generative Density Priors for MR Image      Reconstruction, IEEE Transactions on Medical Imaging, 10.1109/TMI.2021.3081677,      2021

17.S Wang, J Lv, Z    He, D Liang*, Y Chen, M Zhang, Q Liu*, Denoising auto-encoding      priors in undecimated wavelet domain for MR image reconstruction, Neurocomputing,  437: 325-338, 2021

18.Z Qiu#, S Jia#,   S Su, Y Zhu, X Liu, H Zheng, Dong Liang*, H Wang, Highly      accelerated parallel MRI using wave encoding and virtual conjugate coils, Magnetic      Resonance in Medicine, DOI: 10.1002/mrm.28803, 2021 (影响因子4.668)

19.S  Su#, Z Qiu#, C Luo, C Shi, L Wan, Y Zhu, Y Li, X Liu, H Zheng, D Liang*,      H Wang*. Accelerated 3D bSSFP using A Modified Wave-CAIPI Technique with      Truncated Wave Gradients, IEEE Transactions on Medical Imaging,      40:48-58, 2021 (影响因子10.048)

20.Y Zhu#, Y Liu#      ,L Ying, Z Qiu, Q Liu, S Jia, H Wang, X Liu, H Zheng, D Liang*, A      4-minute solution for submillimeter whole-brain T1rho quantification, Magnetic      Resonance in Medicine, 85: 3299-3307, 2021 (影响因子4.668)

21.Y Ge, P Liu, Y      Ni, J Chen, J Yang, T Su, H Zhang, J Guo, H Zheng, Z Li* and D Liang*,      Enhancing the X-ray differential phase contrast image quality with deep      learning technique, IEEE Transactions on Biomedical Engineering,      68: 1751-1758, 2021

22.H Zhao#, Z Ke#, F Yang, K Li, N Chen, L Song, C Zheng*, D      Liang*, C Liu*. Deep Learning Enables Superior Photoacoustic Imaging      at Ultralow Laser Dosages, Advanced Science, DOI:      10.1002/advs.202003097, 2020 (影响因子15.840)

23.Q Zhang, Z Hu, C Jiang, H Zheng, Y Ge* and D Liang*.      Artifact removal using a hybrid-domain convolutional neural network for      limited-angle computed tomography imaging, Physics in Medicine and      Biology, 65(15): 5010, 2020 (影响因子3.609)9

24.S Jia, L Zhang, L Ren, Y Qi, J Ly, N Zhang, Y Li, X Liu, H      Zheng, D Liang*, Y Chung, Joint intracranial and carotid vessel      wall imaging in 5 minutes using compressed sensing accelerated      DANTE-SPACE, European Radiology, 30:119–127, 2020 (影响因子5.315)

25.Q Liu, Q Yang, H Cheng, S Wang, M Zhang, D Liang*,      Highly undersampled magnetic resonance imaging  reconstruction using autoencoding prior,      Magnetic Resonance in Medicine, 83:322-336, 2020

26.Y Ge, T Su, J Zhu, X Deng, Q Zhang, J Chen, Z Hu, H Zheng, D      Liang*, ADAPTIVE-NET: deep computed tomography reconstruction network      with analytical domain transformation knowledge, Quantitative Imaging      in Medicine and Surgery, 2:415-427, 2020

27.Y Liu#, Q Liu#, M Zhang*, Q Yang, S Wang, D Liang*,      IFR-Net: Iterative feature refinement network for compressed sensing MRI, IEEE      Transactions on Computational Imaging, 6(1):434-446, 2020 (影响因子3.814)

28.H Wang#,  Z Qiu#, S Su, S Jia, Y Li, X Liu, H Zheng, D      Liang*, Parameter optimization framework on wave gradients of      WaveCAIPI imaging, Magnetic Resonance in Medicine, 83:1659-1672,      2020 (影响因子4.668)

29.Y Zhu#, Y Liu#, L Ying, X Liu, H Zheng, D Liang*,      Bio-SCOPE: Fast bi-exponentialT1ρ mapping of the brain using      signal-compensated low-rank plus sparse matrix decomposition, Magnetic      Resonance in Medicine, 83:2092-2106,      2020. (影响因子4.668)

30.S Li, B Qin, J Xiao, Q Liu*, Y Wang, D Liang*,      Multi-channel and multi-model based autoencoding prior for grayscale image      restoration, IEEE Transactions on Image Processing, 29:142-156,      2019

31.H Wang#, S Jia#, Y Chang, Y Zhu, C Zou, Y Li, X Liu, H Zheng, D      Liang*, Improving GRAPPA reconstruction using joint nonlinear kernel  mapped and phase conjugated virtual coils, Physics in Medicine and      Biology, 64:14NT01, 2019 (影响因子3.609)

32.S Wang#, Z Ke#, H Cheng, S Jia, L Ying, H Zheng*, D Liang*,      DIMENSION: Dynamic MR imaging with both K-space and spatial prior  knowledge obtained via multi-supervised network training, NMR in      Biomedicine, DOI:10.1002/nbm.4131, 2019 (影响因子4.044)

33.Z Hu#, C Jiang#, F Sun, Q Zhang, Y Ge, Y Yang, X Liu, H Zheng, D   Liang*, Artifact correction in low-dose dental CT imaging using  wasserstein generative adversarial networks, Medical Physics,      46(4):1686-1696, 2019(影响因子4.071)

33.S Wang, Y Gao, Q Liu, L Ying, T Xiao, Y Liu, X Liu, H Zheng, D  Liang*, Learning joint-sparse codes for calibration-free parallel MR  imaging (LINDBERG), IEEE Transactions on Medical Imaging, 37(1):      251-261, 2018

34.B Xiong, Q Liu, J Xiong, S Li, S Wang, D Liang*,      Field-of-Experts filters guided tensor completion, IEEE Transactions on  Multimedia, 20(9):2316-2329, 2018

35.J Cheng, S Jia, L Ying, Y Liu, S Wang, Y Zhu, Y Li, C Zou, X   Liu, D Liang*, Improved parallel image reconstruction using feature  refinement, Magnetic Resonance in Medicine, 80 (1):211-223, 2018(影响因子4.668)

36.Y Zhu, X Peng, Y Wu, E Wu, L Ying, X Liu, H Zheng, D Liang*,  Direct diffusion tensor estimation using model-based method with spatial      and parametric constraints, Medical Physics, 44:570-580, 2017

37.Y Zhu#, Y Liu#, L Ying, X Peng, Y J Wang, X Liu, D Liang*,      SCOPE: signal compensation for low-rank plus sparse matrix decomposition      for fast parameter mapping, Physics in Medicine and Biology, 63      (18): 185009, 2018 (影响因子3.609)

38.X Peng, L Ying, Y Liu, J Yuan, X Liu, D Liang*,      Accelerated exponential parameterization of T2 relaxation with      model-driven low rank and sparsity priors (MORASA), Magnetic Resonance      in Medicine, 76(6):1865-1878, 2016

39.S Wang, J Liu, Q Liu, L Ying, X Liu, H Zheng, D Liang*,      Iterative feature refinement for accurate undersampled MR image      reconstruction, Physics in Medicine and Biology, 61(9):3291-3316, Highlights      of 2016, 2016.

40.Z Hu, Y Zhang, J Liu, J Ma, H Zheng, D Liang*, A feature      refinement approach for statistical interior CT reconstruction, Physics      in Medicine and Biology, 61(14):5311-5334, 2016

发表译著
(1) 压缩感知理论与应用, 机械工业出版社, 2019-01, 第 1 作者


版权所有:© 2018医学人工智能研究中心 粤ICP备09002788号

地址:深圳市南山区西丽深圳大学城学苑大道1068号

联系邮箱:zy.li@siat.ac.cn

技术支持:深圳网站建设(佰达)